Periodic subsystem density-functional theory
نویسندگان
چکیده
منابع مشابه
Periodic subsystem density-functional theory.
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline so...
متن کاملSubsystem real-time time dependent density functional theory.
We present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into...
متن کاملPlane-wave Pseuclopotential Density Functional Theory periodic Slab Calculations of NO Adsorption on Co(111) Surface
Plane-wave pseudopotential Density Functional Theory (OFT) periodic slab calculations were performed usingthe giteralized gradient approximation (GHA) to investigate the adsorption of nitric oxide(NO) on the (I II)surface of Cu. Copper rface was stimulated using th P 'odic Slab Method consisting of Five atomic Layers.Four different adsorption saes (Atop. Bridge, RCP Hollow, and FCC Hollow) were...
متن کاملplane-wave pseuclopotential density functional theory periodic slab calculations of no adsorption on co(111) surface
plane-wave pseudopotential density functional theory (oft) periodic slab calculations were performed usingthe giteralized gradient approximation (gha) to investigate the adsorption of nitric oxide(no) on the (i ii)surface of cu. copper rface was stimulated using th p 'odic slab method consisting of five atomic layers.four different adsorption saes (atop. bridge, rcp hollow, and fcc hollow) were...
متن کاملEquilibrium Geometries of Noncovalently Bound Intermolecular Complexes Derived from Subsystem Formulation of Density Functional Theory.
The subsystem formulation of density functional theory is used to obtain equilibrium geometries and interaction energies for a representative set of noncovalently bound intermolecular complexes. The results are compared with literature benchmark data. The range of applicability of two considered approximations to the exchange-correlation- and nonadditive kinetic energy components of the total e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2014
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4897559